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1. Introduction

The AdS/CFT duality [1] relates gravity theories in AdS spaces with certain conformal

field theories. In particular, it states that IIB string theory on AdS5 ×S5 is dual to N = 4

SYM in four dimensions. In the context of the dual field theory, an extremely interesting

question is whether the theory is confining or not. In order to study this, the appropriate

quantity to look at is the Wilson loop, whose VEV gives the quark-antiquark (qq̄) potential.

In the case at hand, N = 4 SYM has no dynamical quarks. However, one can introduce

static quarks and compute the appropriate Wilson loop to obtain the qq̄ potential. The

Wilson loop can be computed both at weak ’t Hooft coupling, directly in field theory [2],

and at strong ’t Hooft coupling, in the gravity side of the correspondence [3, 4]. In both

regimes the qq̄ potential goes like 1/d, where d is the distance between the quark and

antiquark. This particular coulombian shape, which exhibits no confinement, is due to the

conformal invariance of the theory.

As shown in [1, 4], F-strings ending on the D3-brane and going all the way to the

AdS boundary are seen in the dual theory as external quarks or antiquarks, depending on

the string’s orientation. It is clear then that one can form a qq̄ state with a single string

coming from the boundary to the D3-brane and then going back to the boundary. Once

the coupling to the SU(N) theory is taken into account, the string ends up being U-shaped,

with the apex at a distance u0 from the stack of D3-branes. This configuration is seen as

a qq̄ pair on the SYM side, whose energy is computed by means of a rectangular Wilson

loop. On the other hand, on the gravity side the energy is computed by minimising the

worldsheet area of the string ending on the loop.
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From the Wilson loop one can only extract the qq̄ potential. However, one would expect

that there should be a mechanism to form bound states of N non-dynamical quarks. In [5]

precisely this question was asked, namely whether it would also be possible to construct in

this set-up a baryon configuration. Roughly speaking, a baryon is a colourless bound state

of quarks with finite energy. In the case at hand, where there are no dynamical quarks,

it turns out to be possible to construct such a bound state with static external quarks.

In [5] the gravitational dual of this bound state of quarks was found in terms of a D5-brane

wrapping the S5 part of the spacetime geometry. On this D5-brane there are N F-strings

attached, stretching from the D5-brane to the boundary of AdS5. The endpoints of the N

F-strings are then regarded on the dual SYM side as a bound state of N quarks, in other

words, as a baryon.1 Indeed it can be shown [5] that the associated wave function satisfies

the required symmetry properties.

In this letter we generalise this baryon vertex configuration by adding a new quantum

number. The key point is to realise that S5 can be seen as an S1 bundle over CP 2. The

S1 fibre is a non-trivial U(1) gauge bundle on the CP 2 base, and this allows to switch

on a magnetic BI field on the worldvolume of the D5-brane, proportional to the curvature

tensor of the fibre connection. As we will see, the effect of this field is to dissolve D1-branes

wound around the S1 direction on the D5-brane.

The interest of this generalised baryon vertex is twofold. On one hand, the analysis of

the equations of motion reveals that there is a bound on the number of D-strings that can

be dissolved in the D5-brane. This is an interesting phenomenon, which could be related

to the stringy exclusion principle [6]. Indeed, by dissolving D-strings in the configuration

we are inducing a non-zero winding charge along a cycle of the S5, and these winding

charges appear in the dual field theory as non-zero charges under certain U(1) subgroups

of the SO(6) R-symmetry [7], which are bounded due to conformal invariance. A complete

analysis in the field theory context is however beyond the scope of this letter.

On the other hand, the fact that we have dissolved D-strings on the worldvolume of

the D5-brane hints at the existence of an alternative microscopical description in terms of

non-Abelian D-strings polarising due to a dielectric effect [8]. We give such a microscopical

description in terms of D1-branes expanding into a fuzzy spherical D5-brane using the

action of [8]. We also consider the S-dual of the baryon vertex with magnetic flux, which

consists on a spherical NS5-brane with dissolved F-strings, and with N D1-branes attached

to it. We show that this configuration can also be described microscopically in terms of

F-strings expanding into a fuzzy spherical NS5-brane by dielectric effect.

This letter is organised as follows. In section 2 we present the D5-brane description of

the generalised baryon vertex. We start in subsection 2.1 by revisiting the construction of

the original baryon vertex as given by [5], and then generalise this construction in subsection

2.2 to include a magnetic BI vector on the worldvolume. In subsection 2.3 we study the

dynamics of this configuration and show that there is a bound on the number of dissolved

strings. Section 3 is devoted to the microscopic description of the generalised baryon

1Since the quarks are non-dynamical, this represents a mechanism to form the baryon, and is referred

to as the baryon vertex.
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vertex in terms of non-Abelian D-strings. In subsection 3.1 we calculate the energy of the

configuration of multiple coinciding D-strings polarising into a fuzzy spherical D5-brane.

In subsection 3.2 we show how the N fundamental strings that connect the (dielectric) D5-

brane to the gauge theory on the boundary arise in the microscopical set-up. Subsection

3.3 contains the description of the S-dual of the baryon vertex with magnetic flux in terms

of fundamental strings expanding into a fuzzy spherical NS5-brane. The action describing

coinciding fundamental strings is constructed from the action for coinciding Type IIA

gravitational waves of [9] using T-duality. In the conclusions we review the main points of

our construction.

2. The baryon vertex with magnetic flux

2.1 The baryon vertex revisited

We start by reviewing the major points in the construction of the baryon vertex, as given

in [5]. Consider a probe D5-brane wrapped on the 5-sphere and static in a fixed point in

AdS. In the AdS5 × S5 background there is no 6-form R-R potential to which the probe

brane can couple, however the presence of the 4-form R-R field in the Chern-Simons action

induces a coupling to the BI field strength F = dA of the form

SCS = −T5

∫

R×S5

P [C(4)] ∧ F. (2.1)

In our specific setting, the only non-zero contribution is that of the coupling of the magnetic

part of the R-R form to the electric component of F . Integrating by parts, we find that

this term can be rewritten as

SCS = T5

∫

R×S5

P [G(5)] ∧ A, (2.2)

where G(5) = dC(4) is the R-R 5-form field strength. In our particular background, we

have that G(5) = 4L4√gS5, such that
∫

S5 G(5) = 4π2N (in units where 2πl2s = 1), with N

the number of D3-branes that build up the background. If we therefore take as an Ansatz

for the BI vector

A = At(t)dt, (2.3)

it is clear that the coupling (2.2) factorises as

SCS = T5

∫

S5

G(5)

∫

dtAt = NT1

∫

dtAt, (2.4)

where we have taken into account that the tension of the D5-brane and the tension of a

string are related by 4π2T5 = T1. Therefore, one can interpret that the coupling (2.1) is

inducing N units of BI electric charge on the D5-brane, such that the total action for the

wrapped D5-brane can be written as

S = SDBI + NT1

∫

dtAt. (2.5)
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However we have to check whether the Ansatz (2.3) is consistent with the equations of

motion of the D5-brane system (2.5). As (2.3) implies that F = 0, it is clear that the

equation of motion of A is given by

0 ≡ ∂L
∂At

= NT1. (2.6)

In other words, the equations of motion imply that the Ansatz (2.3) is only compatible with

the action (2.5) if the total BI electric charge on the D5-brane is zero, as it is wrapped on

a compact manifold. However, there is a consistent way of inducing a non-zero BI electric

charge in the worldvolume of the D5-brane, by cancelling this charge with the charge

induced by the endpoints of N open fundamental strings (with appropriate orientation)

stretching between the D5-brane and the boundary of the AdS space. The action (2.5)

is therefore not describing the entire system, but only the D5-brane part. In order to

describe the full dynamics one has to add the action for the open strings, consisting of N

copies of the Nambu-Goto action SF1, and a boundary term contribution T1

∫

Atdt from

the endpoints:

Stotal = SDBI + NT1

∫

dtAt + NSF1 − NT1

∫

dtAt . (2.7)

Note that the contribution from the open string endpoints cancels exactly the Chern-Simons

term in the D5-brane action, such that the total system is described by [10]

Stotal = SDBI + NSF1. (2.8)

The configuration that we have just described is the so-called baryon vertex. Since the N

F-strings, stretching from the D5-brane all the way to the AdS boundary, have the same

orientation, the dual configuration on the CFT side corresponds to the bound state of N

(anti)quarks, which is gauge invariant and antisymmetric under the interchange of any two

quarks [5].

2.2 Adding magnetic flux to the baryon vertex

It is well known that S5 can be regarded as a U(1) fibre over CP 2 with a non-trivial fibre

connection. From the CP 2 point of view, the U(1) connection, B, can be seen as a non-

trivial gauge bundle inducing a non-zero instanton number [11, 12]. In view of this, it seems

natural to consider a generalisation of the baryon vertex in which magnetic components of

the BI field strength are switched on, which are proportional to dB.

In the S5 fibre coordinates the AdS5 × S5 background reads

ds2 =
u2

L2
ηabdxadxb +

L2

u2
du2 + L2

(

(dχ − B)2 + ds2
CP 2

)

,

Cabcd = L−4u4εabcd , Cϕ2ϕ3ϕ4χ =
1

8
L4 sin4 ϕ1 sinϕ2, (2.9)
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where ds2
CP 2 stands for the Fubini-Study metric on CP 2, χ is taken along the U(1) fibre

and B is the connection of the fibre bundle. Explicitly [13]

B = −1

2
sin2 ϕ1(dϕ4 + cos ϕ2dϕ3),

ds2
CP 2 = dϕ2

1 +
1

4
sin2 ϕ1

(

dϕ2
2 + sin2 ϕ2dϕ2

3 + cos2 ϕ1(dϕ4 + cos ϕ2dϕ3)
2
)

. (2.10)

The fibre connection B satisfies the following properties [11]

dB = ?(dB),

∫

CP 2

dB ∧ dB = 4π2 , (2.11)

where the Hodge star is taken with respect to the metric (2.10) on CP 2.

In this system of coordinates the baryon vertex consists on the D5-brane wrapped

around the S5 and the fundamental strings laying in the u-direction of AdS5 [4]. As

mentioned above, besides the electric components of the BI field strength, representing the

charges induced by the F-strings ending on the D5-brane, one could think of turning on also

magnetic components. Due to the fact that CP 2 allows instanton solutions, it is natural to

take the magnetic components living in the CP 2 and proportional to the curvature tensor

of the U(1) fibre connection B,

F = 2n dB . (2.12)

With this Ansatz F satisfies the same properties (2.11) as the fibre connection dB, namely

it is selfdual and ∫

CP 2

F ∧ F = 8π2n2 . (2.13)

This integral is non-zero because it is the product of two integrals
∮

F over non-trivial

two-cycles in CP 2. Since
∮

F = 2πn due to the Dirac quantization condition, n represents

the winding number of D3-branes wrapped around each of the two-cycles. Note that

the winding number must be the same on each cycle in order to preserve the selfduality

condition. Moreover, if we want that some of the supersymmetries of the D5-brane, if any,

are preserved, the two D3-branes must be wrapped with the same orientation.

With this choice for the BI field strength it is clear that there are no other couplings in

the Chern-Simons action besides the ones we already considered in (2.1). The Born-Infeld

action however is given by

SDBI = −T5

∫

d6ξ
u

L

√

det
(

gαβ + Fαβ

)

, (2.14)

where the coordinates xα indicate the angles on the S5. Since F is selfdual, the determinant

under the square root is a perfect square, yielding

SDBI = −T5

∫

d6ξ u
√

gS5

(

L4 + 2FαβFαβ
)

. (2.15)

The Ansatz (2.12) is consistent with the action (2.15), as is reflected in the fact that

the equations of motion for the magnetic components of F are given by dF = 0, which
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is indeed satisfied by (2.12). Finally, substituting the expression for F in the action and

integrating over the S5 directions we obtain the following expression for the energy of the

spherical D5-brane:

ED5 = 8π3T5 u
(

n2 +
L4

8

)

. (2.16)

Note that this energy consists of two parts: one contribution from the tension of the 5-brane

wrapped around the five-sphere and one from the magnetic flux of the BI vector.

While the electric components of F induce N units of BI charge on the D5-brane world-

volume through the coupling (2.1), the magnetic components induce a non-zero instanton

number n2, due to (2.13). In particular, the Chern-Simons coupling

SCS =
1

2
T5

∫

R×S5

P [C(2)] ∧ F ∧ F , (2.17)

can be integrated directly over the CP 2 directions, yielding

SCS = n2T1

∫

R×S1

P [C(2)] , (2.18)

where we have used again that T1 = 4π2T5. Even though in AdS5 × S5 C(2) is zero, this

coupling indicates that the magnetic flux is inducing n2 D-string charge in the configuration.

These strings are wound around the fibre direction χ.

Note that n D3-brane charge is also induced in the configuration through the Chern-

Simons coupling

SCS = −T5

∫

R×S5

P [C(4)] ∧ F , (2.19)

with the D3-branes wrapped on the non-trivial two-cycles of the CP 2. However, only

the charge at the intersection of the two D3-branes contributes to the energy. In fact,

expression (2.16) is precisely of the form of a threshold BPS intersection for D1- and D5-

branes, being the total energy just the sum of the energies of each of the constituents.

Let us now discuss the influence of the N fundamental strings that stretch from the

D5-brane to the boundary of AdS5. In order to keep the spherical D5-brane undeformed

the F-strings must be uniformly scattered over the five-sphere. Otherwise, if a significant

number of strings are joined at the same point, their backreaction is not negligible and they

will start to deform the 5-sphere [14, 15]. Then, in this limit, one would need to consider

the full DBI problem, in which the F-strings are seen as a spike in the worldvolume of

the D5-brane, in the spirit of [16 – 18]. However, taking the N fundamental strings to join

the D5-brane in different points breaks all the supersymmetry, since although each string

preserves one half, the fact that they take different positions on the D5-brane makes that

the preserved Killing spinors of each string are different, such that all supersymmetries are

broken [15]. We will see below that this breaking results in the fact that the configuration

has a binding energy.

The spherical D5-brane with magnetic flux that we have discussed in this section

is very similar to the spherical D2-brane probe with dissolved D0-brane charge of [19].

It was shown in [8] that there exists a complementary, microscopical description of this

– 6 –
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system in terms of D0-branes expanding by dielectric effect into a fuzzy spherical D2-

brane, and that when the number of D0-branes is large enough, the microscopical and

D2-brane descriptions coincide. The analogy with our case suggests that there should exist

a microscopical description of the baryon vertex with magnetic flux, in terms of multiple

non-Abelian D-strings, expanding into a fuzzy spherical D5-brane. We will provide this

microscopical description in the next section. In the remaining part of this section we will

first analyse the influence of the magnetic flux on the dynamics of the baryon vertex.

2.3 The bound on the instanton number

It was argued in [10] that in order to analyse the stability of the baryon vertex in the

u-direction (i.e. against perturbations in the holographic direction of AdS), one has to

consider the influence of the external F-strings. The energy E of the baryon vertex is then

proportional to N times the energy of a qq̄ system, which is in turn inversely proportional

to the distance ` between the quarks [3]. As the proportionality constant between E and

` is negative, the baryon vertex is indeed stable under perturbations in u.

In this subsection we will perform the same calculation in [10], but taking into account

the effect of the non-zero magnetic flux on the D5-brane.

The action for the baryon vertex with magnetic flux on the worldvolume of the D5-

brane is given by

S = SD5 + SNF1, (2.20)

with SD5 given by minus the time integration of (2.16). On the other hand, the F-strings

connecting the D5-brane and a quark on the boundary can be parametrised by the world-

volume coordinates {t, x} and the position in AdS by u = u(x). Then, the Nambu-Goto

action is given by

SNF1 = −NT1

∫

dtdx

√

(u′)2 +
u4

L4
, (2.21)

where u′ denotes the derivative of u(x) with respect to x. Following the analysis of [10],

the equations of motion associated to the system come in two sets: the bulk equation of

motion for the strings, and the boundary equation of motion (as we are dealing with open

strings), which contains as well a term coming from the D5-brane. One can show easily

that these equations of motion are:

u4

√

(u′)2 + u4

L4

= const, (2.22)

u′
0

√

(u′
0)

2 +
u4
0

L4

=
πL4

4N

(

1 +
8n2

L4

)

, (2.23)

for the bulk and the boundary respectively, with u0 the position of the baryon vertex in

the holographic direction and u′
0 = u′(u0). For future convenience, let us call

√

1 − β2 =
πL4

4N

(

1 +
8n2

L4

)

. (2.24)
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Figure 1: Radius of the baryon (in units of L2/u0) as a function of n
2

N
.

Notice that in our conventions, gs = 1 and 2πl2s = 1, we have that

L4 = 4πgsl
4
sN =

N

π
, (2.25)

and we can rewrite (2.24) as

β2 = 1 − 1

16

(

1 +
8πn2

N

)2
. (2.26)

Equations (2.22) and (2.23) can then be combined into a single one,

u4

√

(u′)2 + u4

L4

= β u2
0L

2. (2.27)

In the absence of magnetic BI flux on the worldvolume, β =
√

15/16, as in [10]. However, in

general for non-zero n2, we have to make sure that β is real (as u is real), which from (2.26)

implies that
n2

N
≤ 3

8π
. (2.28)

Surprisingly, we find that there is a bound on the number of D-strings that can be dis-

solved in the configuration, which depends on the number of D3-branes that source the

background.

Integrating the equation of motion, we find that the size of the baryon ` is given by

` =
L2

u0

∫ ∞

1
dy

β

y2
√

y4 − β2
, (2.29)

with y = u/u0. This integral can be solved in terms of hypergeometric functions [10]. In

figure 1 we have plotted the radius ` of the baryon as a function of n2

N
. The plot reveals that

the radius of the baryon cannot be continued outside the allowed domain given by (2.28).

Note that the size of the baryon vertex goes to zero as we saturate the bound.
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Figure 2: The energy (in units of u0) of the baryon vertex as a function of n
2

N
.

Finally, the energy for a single string is, in terms of u0:

E = T1u0

{

∫ ∞

1
dy

[

y2

√

y4 − β2
− 1

]

− 1

}

. (2.30)

Notice that this expression has the same form than the expression in [10], and indeed takes

the same value for n = 0. In particular, the dependence on
√

g2N and on u0 is unaltered,

as expected by conformal invariance. The explicit dependence of the energy on the ratio
n2

N
can be seen in figure 2. As expected, the configuration is only well defined for n2

N
inside

the allowed interval.

The fact that we find a bound on the number of dissolved D1-branes due to the

dynamics of the F-strings, is quite surprising, and it is not entirely clear to us what its

interpretation is. For a brief discussion we refer to the conclusions.

3. The microscopic description of the baryon vertex

As we mentioned at the end of subsection 2.2, the fact that the magnetic flux in the D5-

brane worldvolume induces D1-brane charge, suggests a close analogy with the dielectric

effect described in [19, 8]. In this section we will show that it is indeed possible to give

an alternative, microscopic description of the baryon vertex, in terms of a fuzzy spherical

D5-brane built up out of dielectrically expanded D1-branes.

3.1 D1-branes polarising to a 5-brane

The action describing the dynamics of n2 coinciding D1-branes is the non-Abelian action

given in [8], which for the AdS5 × S5 background reduces to the form

Sn2D1 = −T1

∫

d2ξ STr
{

√

∣

∣

∣
det

(

P [gµν + gµi(Q−1 − δ)ijgjkgkν ]
)

detQ
∣

∣

∣

}

+ T1

∫

d2ξ STr
{

P [i(iX iX)C(4) − 1
2 (iX iX)2C(4) ∧ F

}

, (3.1)

– 9 –
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where gµν is the metric in AdS5 × S5 and

Qi
j = δi

j + i[Xi,Xk]gkj ,
(

(iX iX)C(4)
)

µν
= 1

2 [Xλ,Xρ]C
(4)
ρλµν , (3.2)

(iX iX)2C(4) = 1
4 [Xλ,Xρ][Xν ,Xµ]C

(4)
µνρλ.

Inspired by the coupling (2.18) in the D5-brane calculation we wind the D-strings around

the U(1) fibre direction χ and let them expand into the CP 2. In this way we obtain a fuzzy

version of the S5 as an Abelian U(1) fibre over a fuzzy CP 2, similar to the microscopic

description of 5-dimensional giant gravitons in AdS4 × S7 and AdS7 × S4 found in [20].

In the AdS5 × S5 background the Chern-Simons couplings in (3.1) vanish. Therefore,

the expansion of the strings into a fuzzy CP 2 is caused by the couplings in the Born-Infeld

part of the action and, thus, it is entirely due to a gravitational dielectric effect, analogous

to the configurations described in [21].

A fuzzy version of CP 2 is well known (see for example [22]). CP 2 is the coset manifold

SU(3)/U(2), and can be defined as the submanifold of R
8 determined by the constraints

8
∑

i=1

xixi = 1 ,

8
∑

j,k=1

dijkxjxk =
1√
3
xi , (3.3)

where dijk are the components of the totally symmetric SU(3)-invariant tensor. In our

coordinates (2.10) we have (see [20])

x1 =
√

3
2 sin 2ϕ1 cos ϕ2

2 cos ϕ4+ϕ3

2 , x5 = −
√

3
2 sin 2ϕ1 sin ϕ2

2 sin ϕ4−ϕ3

2 ,

x2 = −
√

3
2 sin 2ϕ1 cos ϕ2

2 sin ϕ4+ϕ3

2 , x6 =
√

3
2 sin2 ϕ1 sin ϕ2 cos ϕ3,

x3 =
√

3
2 [sin2 ϕ1(1 + cos2 ϕ2

2 ) − 1], x7 = −
√

3
2 sin2 ϕ1 sin ϕ2 sin ϕ3,

x4 =
√

3
2 sin 2ϕ1 sin ϕ2

2 cos ϕ4−ϕ3

2 , x8 = 1
2(3 sin2 ϕ1 sin2 ϕ2

2 − 1) ,

(3.4)

for which 1
3

∑8
i=1(dxi)2 = ds2

CP 2 is the Fubini-Study metric (2.10). A fuzzy version of CP 2

can be obtained by imposing the conditions (3.3) at the level of matrices. Define a set of

coordinates Xi (i = 1, . . . , 8) as

Xi =
T i

√

(2n2 − 2)/3
, (3.5)

with T i the generators of SU(3) in the n2-dimensional irreducible representations (k, 0) or

(0, k), with n2 = (k + 1)(k + 2)/2 (see [20, 22] for more details). Nothe that (2n2 − 2)/3

is the quadratic Casimir of SU(3) in these representations. The first constraint in (3.3) is

then trivially satisfied through the quadratic Casimir of the group, whereas the rest of the

constraints are satisfied for any n2. The commutation relations between the Xi are given

by

[Xi,Xj ] =
if ijk

√

(2n2 − 2)/3
Xk, (3.6)
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with f ijk the structure constant of SU(3) in the algebra of the Gell-Mann matrices [λi, λj ] =

2if ijkλk.

Substituting the non-commutative Ansatz above in the action (3.1) and particularising

to the AdS5 × S5 background, we find

Sn2D1 = −T1

∫

dtdχ u STr
{

�
+

L4

4(2n2 − 2)

�
}

= −2πn2T1

∫

dt u
(

1 +
L4

8(n2 − 1)

)

, (3.7)

since, remarkably,

detQ =
(

�
+

L4

4(2n2 − 2)

�
)2

, (3.8)

in the large n limit.2 It is to be emphasized that the fact that the detQ is a perfect square

is the microscopical analogous of the perfect square that we obtained for the DBI action

in the macroscopic case.

The energy of the n2 expanded D1-branes is then given by

En2D1 = 2πuT1

(

n2 +
n2L4

8(n2 − 1)

)

. (3.9)

Taking into account that the tensions of the D1- and the D5-brane are related by T1 =

4π2T5, it is easy to see that in the limit where the number of D1-branes n2 → ∞, the above

expression reduces to the energy of the macroscopic D5-brane, given by (2.16).

3.2 The N F-strings in the microscopic description

So far we have compared the energy of the spherical D5-brane of the baryon vertex to the

energy of the configuration built up by n2 D1-branes expanding into a D5-brane with the

topology of a fuzzy 5-sphere. We have shown that the two descriptions agree in the limit

where the instanton number on the D5-brane is very large. However an essential part in

the construction of the baryon vertex are the N fundamental strings that stretch from the

D5-brane in the interior to the boundary of AdS5. In this subsection we show how these

strings arise in the microscopical setup.

The CS action for coincident D-strings contains the following couplings to the C(4)

R-R potential:

SCS = T1

∫

dtdχ STr
{

P [(iX iX)C(4)] − P [(iX iX)2C(4)] ∧ F
}

, (3.10)

where F = dA + [A,A] is the U(n2) BI field strength.

The first term in (3.10) is zero in the AdS5 × S5 background. The second term, in

turn, can be written as

SCS =
T1

4

∫

dtdχ STr
{

[Xi,Xj ][Xk,X l]C
(4)
ijkl ∂χAt

}

, (3.11)

2To be more precise, we are neglecting higher order powers of L2/n. This is the right limit to study the

matching with the macroscopical description of the previous section.
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in the gauge Aχ = 0. Integrating by parts we have that

SCS = −T1

4

∫

dtdχ STr
{

[Xi,Xj ][Xk,X l]G
(5)
χijklAt

}

. (3.12)

Taking into account that in the non-commutative coordinates introduced in (3.5), G(5) is

given by [20]

G
(5)
χijkl = L4fm

[ijf
n
kl]X

mXn, (3.13)

we find that

SCS =
L4T1

2(n2 − 1)

∫

dtdχ STr
{

At

}

, (3.14)

where we have made use of the commutation relations (3.6). In analogy with the Abelian

case (2.3), we can take as an Ansatz for A,

A = At(t)
�
dt. (3.15)

Integrating over χ and taking into account that L4 = N/π we find finally that

SCS =
n2

n2 − 1
NT1

∫

dt At. (3.16)

The coupling (3.11) is therefore inducing, in the large n2 limit, N BI charges in the con-

figuration.3 These charges have to be cancelled by N fundamental strings ending on the

D1-brane system. The dielectric coupling to C(4) in (3.10) will then take care that these

strings are expanded over the full S5.

We can therefore conclude that our microscopical picture, consisting of multiple coin-

ciding D-strings expanding into a fuzzy D5-brane, reproduces in the large n2 limit all the

relevant features of the baryon vertex with magnetic flux. Not only did we obtain the same

expression for the energy of the D5-brane, but we also found traces of the presence of the

fundamental strings stretched between the (dielectric) 5-brane and the boundary of AdS.

3.3 F-strings polarising to a NS5-brane

Due to the S-duality invariance of the AdS5×S5 background, the baryon vertex with mag-

netic flux, described in the previous sections, can alternatively be realised as a NS5-brane

wrapped on the S5, with N D1-branes stretching between the brane and the boundary

of the AdS space and with n2 F-string charge dissolved in its worldvolume. Microscopi-

cally this configuration is described in terms of fundamental strings expanding into a fuzzy

NS5-brane. In this subsection we give the details of this description.

An action describing coincident F-strings in Type IIB can be constructed from the

action for coincident gravitational waves in Type IIA, using T-duality. Such an action was

constructed in [25] to the linearised level in the background fields, and turned out to be

the S-dual of the action for coincident D1-branes of [8], linearised in the background fields.

3The fact that the number of strings is N only in the large n2 limit is similar to the construction of the

fuzzy funnels of [23, 24], where D3- and D5-branes are shown to have integer charges only in the limit of

infinite D1-branes.
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Since in this picture the dynamics of the non-Abelian F-strings is induced by the open

D-strings that end on them, this action is adequate to describe the system in the strong

coupling regime.

However, given the S-duality invariance of the AdS5×S5 background, the non-Abelian

action for F-strings can well be used here. We will start by constructing an action valid

beyond the linearised level, and therefore suitable for the study of the AdS5 × S5 back-

ground.

Using the action of [26, 9] for coincident Type IIA gravitational waves, valid to all

orders in the background fields, we can construct an action describing coincident Type IIB

F-strings by T-dualising along the direction of propagation of the waves.

The action for coincident Type IIA gravitational waves contains a worldvolume scalar

field associated to D0-branes “ending” on the system (see [26]). We will set to zero this

field for simplicity and take as well B(2) = C(1) = 0. This is suitable for the study of the

AdS5 × S5 background. We then have (see [26, 9])

Sn2WA
= −TW

∫

dτ STr
{

k−1

√

∣

∣

∣
det

(

P [Eµν + Eµi(Q−1 − δ)ijEjkEkν ]
)

detQ
∣

∣

∣

}

+TW

∫

dτ STr
{

−P [k−1k(1)] + iP [(iX iX)C(3)] +
1

2
P [(iX iX)2ikB

(6)]
}

,(3.17)

where

Eµν = gµν − k−2kµkν + k−1eφ(ikC
(3))µν ,

Qi
j = δi

j + ie−φk[Xi,Xk]Ekj . (3.18)

Here kµ is a Killing vector pointing on the direction of propagation of the gravitational

waves.4 B(6) is the NS-NS 6-form potential. Note that (3.17) is a gauged sigma model, in

which the Killing direction does not appear as a physical degree of freedom [27].

T-dualising the above action along the Killing direction, we get a non-Abelian action

for n2 F-strings in Type IIB:

Sn2F1 = −T1

∫

dτdσ STr
{

√

∣

∣

∣
det

(

P [Eµν + Eµi(Q−1 − δ)ijEjkEkν ]
)

det Q
∣

∣

∣

}

−T1

∫

dτdσ STr
{

P [B(2)] + iP [(iX iX)C(4)] − 1

2
P [(iX iX)2B(6)]

}

, (3.19)

where now

Eµν = gµν + eφC(2)
µν ,

Qi
j = δi

j + ie−φ[Xi,Xk]Ekj . (3.20)

This action is no longer a gauged sigma model, as it can be written in a completely covariant

way. Although some of the fields are set to zero due to the truncation in (3.17) we see

4In our notation k(1) = gµνkνdxµ. The coupling to k(1) in (3.17) shows that the waves carry momentum

along the Killing direction. See [26] for more details.
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that (3.19) is just the S-dual of the action for n2 coincident D-strings of [8]. In particular,

the non-Abelian worldvolume scalar associated to D0-branes ending on the Type IIA waves

is mapped under T-duality into a non-Abelian vector field which is now associated to D1-

branes ending on the system of fundamental strings. One can check at the linearised level

(see [25]) that the field strength of this vector field appears in the action for the F-strings

exactly as predicted by S-duality.

Using the action (3.19) to describe n2 F-strings in the AdS5 × S5 background is now

straightforward. The computation of the energy of the baryon vertex reduces to the same

computation of subsection 3.1. However the strings expand now into a fuzzy NS5-brane,

since the configuration acts as a source for the B(6) potential through the last coupling

in (3.19). The energy of the configuration is given by

En2F1 = 2πuT1

(

n2 +
n2L4

8(n2 − 1)

)

, (3.21)

which matches exactly the result (3.9) obtained from the D1-brane calculation.

Finally, the S-dual of the coupling (3.11) shows that N open D1-branes must be added

to the configuration stretching between the NS5-brane and the boundary of the AdS space.

Therefore we have provided a microscopical description of the (generalised) baryon vertex

in terms of a spherical NS5-brane with N D1-branes attached to it [5].

4. Conclusions

The baryon vertex consists on a single probe D5-brane wrapping the S5 in AdS5 × S5

to which N fundamental strings are attached, running from the D5-brane to the AdS

boundary. Since all the strings have the same orientation, this represents a gauge invariant

bound state of N quarks, i.e. a baryon [5]. Due to the S-duality invariance of the AdS5×S5

background the baryon vertex can alternatively be realised in terms of a NS5-brane with

N D1-branes attached or as a (p, q) 5-brane with (p, q) strings attached.

In this letter, we have found a generalised version of the baryon vertex by writing the

S5 as an S1 fibre bundle over CP 2. Since CP 2 admits an instantonic magnetic field pro-

portional to the curvature tensor of the fibre connection, it is possible to consistently plug

in a magnetic field on the worldvolume of the D5-brane. These instantons have the effect

of dissolving a number n2 of D-strings on the D5-brane, wound in the fibre direction. This

charge is, however, not topological, since the 5-sphere has no non-trivial cycles. Therefore,

it might be that the baryon vertex with flux represents only a metastable configuration5

(see fro example [29 – 31] for a recent discussion on this type of configurations).

On the other hand, the fact that one can consistently add a number of dissolved D1-

branes to the worldvolume of the D5, hints to the existence of an alternative description

of the baryon vertex, in terms of expanded D1-branes. We have explicitly provided such a

microscopical description of the generalised baryon vertex in terms of D-strings (F-strings)

expanding into a D5-brane (NS5-brane) due to Myers dielectric effect. Here the dielectric

5We thank the referee for a useful discussion about this point.
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effect is purely gravitational, i.e. caused by the curvature of the background. Indeed, the

CS coupling, as in the macroscopical case, is only indicating the need to introduce the N

external F-strings (D-strings) that build up the vertex. The expanding strings are wound

along the S1 fibre of S5 and expand into a fuzzy version of CP 2. The fuzzy S5 is then

realised as an Abelian U(1) fibre over a fuzzy CP 2.

Our construction needs, implicitly, that the F-strings are uniformly scattered over

the D5-brane, in such a way that their backreactions are compensated and the D5-brane

remains approximately spherical. This however has the effect of breaking all the supersym-

metries [15]. If we insist in preserving some of the supersymmetries, we have to let all strings

end at the same point of the D5-brane, which in turn invalidates our probe approximation.

Indeed, in such a case one should look for a full description of the baryonic brane [14, 15],

in terms of a single D5-brane developing a spike representing the F-strings [16]–[18], anal-

ogous to the D3-brane spike of [28]. However, while in that case the binding energy of the

configuration is zero, reflecting the fact that it is supersymmetric, this is not the case for

our configuration, for which we obtain a non-zero binding energy.

One of the most surprising conclusions of the analysis of the dynamics of the generalised

baryon vertex is the fact that the number of dissolved D-strings is bounded from above.

A careful study of the baryon vertex along the lines in [10], shows that the configuration

is stable against fluctuations in the u direction. In particular, the configuration has the

same dependence of the energy on u0 as the original vertex. However, in our case the

number of dissolved strings must not violate certain bounds imposed by the dynamics of

the system. It is likely that this bound is related to the stringy exclusion principle of [6].

Our configuration with non-zero magnetic flux carries a non-zero winding number in the

fibre direction of the S5, which in terms of the dual field theory will manifest itself as a

charge under a specific U(1) subgroup of the SU(3) R-symmetry group [7]. As these charges

are bounded due to conformal invariance, one expects to find a bound on the magnetic

flux. This is quite similar to the giant graviton effect. Indeed, in AdS5 × S5 there exists a

giant graviton, which consists of a D3-brane wrapped on an S3 inside the CP 2 part of the

S5 and moving along the fibre direction. This giant graviton state corresponds in the dual

field theory to a chiral primary operator with the same U(1)-charge as our configuration. It

is surprising however that we can only find the bound on the magnetic flux when the whole

system of wrapped D5-branes and F-strings is considered. Another interesting observation

is made in [32], where it was noted that in AdSp ×Sq spaces the radius L of the Sq can be

expressed in terms of the dimension n of the representation as Lq−1 = lq−1
PL n, if one tries

to describe this q-sphere as a fuzzy manifold. We leave the precise interpretation of this

charge to future investigations.
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